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Abstract—It is widely accepted that the difficulty and expense
involved in acquiring the knowledge behind tactical behaviors has
been one limiting factor in the development of simulated agents
representing adversaries and teammates in military and game
simulations. Several researchers have addressed this problem with
varying degrees of success. The problem mostly lies in the fact
that tactical knowledge is difficult to elicit and represent through
interactive sessions between the model developer and the subject
matter expert. This paper describes a novel approach that employs
genetic programming in conjunction with context-based reasoning
to evolve tactical agents based upon automatic observation of a
human performing a mission on a simulator. In this paper, we
describe the process used to carry out the learning. A prototype
was built to demonstrate feasibility and it is described herein.
The prototype was rigorously and extensively tested. The evolved
agents exhibited good fidelity to the observed human performance,
as well as the capacity to generalize from it.

Index Terms—Context-based reasoning, human behavioral
modeling, genetic programming, simulation.

I. BACKGROUND AND PROBLEM DEFINITION

WE BELIEVE that the most significant obstacle in the de-
velopment of tactical agents has been the inability of

developers to quickly and effectively build robust agents upon
demand. We define tactical agents as computer models of hu-
mans that deal with their environment in a way similar to how
a human would if facing the same situation while in the execu-
tion of a mission. These agents demonstrate tactical behavior,
which we further define as the continuous and dynamic process
of decision making by a tactical agent (human or otherwise)
who interacts with its environment while attempting to carry out
a mission in the environment.

The high level of complexity of many of the existing agent ar-
chitectures makes the task of building these tactical agents very
difficult. We assert that this difficulty and its consequent expense
have curtailed the widespread use of computer-generated forces
(CGFs) in military training simulations. It would be beneficial
if models of tactical human behavior could be easily built and
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fielded within a few days of their being requested. This quick
turn-around ability could for example, permit virtual opponent
entities in a simulation to be developed for use in just-in-time
mission or game rehearsal.

Furthermore, there is evidence in the literature suggesting that
models developed through an interaction between the model en-
gineer (ME) and the subject matter expert (SME) tend to repre-
sent generic, doctrine-like behavior [6], [19], [27], [33]. That
is, the behavior is quite logical and possibly optimal, but often
with little resemblance to a real human’s actions [8]. Pew and
Mavor [28, p. 15] support this hypothesis by stating that such
doctrinally-based agents are “ expressed as verbal descrip-
tions of institutional, social, and political processes” and such
verbal models are not capable of reflecting the complex behavior
required in tactical situations. These agents fail to represent the
personal characteristics of different people that can cause their
performance to vary, possibly significantly. It would then be
beneficial if models could be sufficiently fine-grained to reflect
individual human traits, such as aggressiveness, passiveness, in-
competence and fatigue as well as the optimal behavior.

We assert that the cause of these shortcomings lies partly in
the way the agents are represented and partly in the means em-
ployed to elicit the knowledge used in these models. Our in-
vestigation addresses the second problem by devising a method
through which agents can be built relatively quickly through the
(automated) observation of a human expert executing the de-
sired mission or task in a simulator. Our hypothesis is that one
does not need to understand the cognitive process behind the ob-
servable actions of a human in order to quickly build a model of
a human’s behavior. Furthermore, this process of learning from
observation permits the agent to reflect the personal characteris-
tics of the human being observed with a fidelity at least as good
as that of agents created in a traditional manner.

II. LEARNING FROM OBSERVATION

Automatic model construction could conceivably improve the
development process of human-like tactical agents. If the agents
could be created automatically merely by observing a human
executing a mission on a simulator or on a well instrumented live
exercise, it would dramatically facilitate the agent development
process. We refer to this as learning from observation.

The term learning from observation has its roots in biology.
Infants of many species often learn things by observing adults.
Studies have shown that humans fully develop observational
learning by the age of 24 months [1]. By that age, children
can easily learn a simple task by observing another person per-
forming it. Inspired by how humans and other mammals seem
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to learn by observation, the machine learning community has
developed several theories on learning from observation as ap-
plied to different areas. The AI literature often refers to learning
from observation as a method of learning the behavior of another
agent or human by observing its action [3], [23], [32], [34]. Such
a characterization of learning from observation merely dictates
how the data for learning are to be collected—through observa-
tion. It makes no statements on what learning paradigms to use.
We, thus, define learning from observation as:

The agent shall adopt the behavior of the observed entity
solely from interpretation of data collected by means of
observation.

Our specific objective is to learn the tactical behavior of an
observed human and create a tactical agent that is able to re-
produce this behavior in a simulation or in the real world. We
present a new approach to building tactical agents from observa-
tion, where the resulting agents inherit personal (i.e., individual)
behavior patterns for realistic, but nonoptimal tactical behavior.
The novel contributions of this investigation are both, the ob-
jective of the research (i.e., personalized models of tactical be-
havior) and the means to develop them [i.e., the synergistic com-
bination of context-based reasoning (CxBR) and genetic pro-
gramming (GP)].

A. Literature Review

Gonzalez et al. [16] argue that learning from observation is
especially well-suited to acquiring tactical knowledge—that
knowledge used to select the most appropriate action for a
given situation. Some of this tactical knowledge could con-
sist of behavior patterns about which the human is unaware,
undesirable behavior patterns, or behavior based on intuition.
Prior work in modeling human behavior through learning from
observation has been conducted in the area of humanoid robots
[7], maneuvering a car [29], flying an aircraft [23] and driving
a tank [20]. However, most of the work has been done to create
an optimally performing agent and often regarding low-level
motor skills. The objective in the area of humanoid robots is to
mimic the human motion pattern and have the robots perform
in a human-like fashion. The similarity to human behavior here,
however, lies in the motor skills and not in tactical decision
making. When it comes to controlling a vehicle, the task could
be to control the vehicle in the most appropriate manner (i.e.,
the best humanly possible) [32]. In other words, the objective
was, for example, to create a model that represents an expert
driver who follows all the traffic rules. If, on the other hand, the
objective is to create a realistic simulation, then models of both
good and bad drivers should be incorporated and the models of
individuals should behave differently from each other.

Few results have been presented in the literature where the
focus is on personalized behavior patterns and/or tactical deci-
sion making. Sammut et al. [31] presented results where per-
sonalized agents learned individual behavior of 20 different pi-
lots flying a specific route. The agents cloned the pilots’ behav-
iors and only learned to fly the given route. However, the agents
could not fly any other route or be used in other environments.
Modeling tactical behavior by observation was also investigated
by Sidani [32]. Here, two learned behavior patterns were merged

and the agent had to make a tactical decision on which of the two
behavioral patterns to use. However, the tactical decision made
by the agent was not learned from observation, nor evaluated
with the actor’s performance.

A feasible way of collecting data and recording the actions
of the user is to employ a simulator to implement learning from
observation, as in the work of Gonzalez et al. [15]. By using a
simulator instead of the real world, data collection can be sim-
plified as there is no need to worry about instrumentation and
perception issues. Additionally, it would be possible to compose
and observe difficult or dangerous situations that would not be
feasible if done live. Furthermore, it is much easier to design
scenarios supporting the objectives of the research and to put
the actor in situations worth monitoring. Lastly, there is no need
for complex sensors or image recognition algorithms to be able
to understand the simulated environment.

B. Our Approach to Learning From Observation

We devised a learning strategy that is compatible with the ob-
jective of building agents that display tactical human behavior.
To achieve this, we combine GP as the learning strategy and
CxBR as the underlying modeling paradigm in which the re-
sulting models will be expressed and executed. This combina-
tion turns out to be quite synergistic because of the following.

1) GP is a nontransforming learning paradigm. That is, it
does not transform the learned knowledge into an ob-
scure representation, as does a neural network (e.g., its
weights). The output of a GP process is source code.
Therefore, the resulting model can be directly inserted
into the CxBR model structure with no modification. The
nontransforming nature of GP makes it possible to inter-
pret and analyze the learned knowledge.

2) CxBR provides a hierarchical structure that modularizes
the knowledge for the GP learning algorithm to operate
in. It serves to prune the search space that could enhance
the learning capabilities of GP when the GP is learning
[21].

Before continuing, very brief discussions of CxBR and GP
follow as a background to the design decisions that had to be
made for the new approach to learning from observation.

C. Context-Based Reasoning

The concept of using contexts for modeling human intelli-
gence has received significant interest from researchers in the
AI literature. McCarthy [25] developed an algebra for defining
and manipulating contexts. Guha [18] employed a similar al-
gebra to incorporate the concept of contexts in the development
of the CYC system. Brezillon [5] developed context-based in-
telligent assistant systems while Turner [35], [36], Bass et al.
[2] and Gonzalez and Ahlers [13] have all independently devel-
oped context-based approaches to modeling human behavior.

Gonzalez and Ahlers presented CxBR as a modeling tech-
nique that can efficiently represent the tactical behavior of hu-
mans in intelligent simulated agents. Results have shown that
it is especially well-suited to modeling such behavior. CxBR is
based on the idea that:
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Fig. 1. Evolving GP.

• a situation calls for a set of actions and procedures that
properly address the current situation;

• as a mission evolves, a transition to another set of actions
and procedures may be required to address a new situa-
tion;

• things likely to happen under the current situation are lim-
ited by the current situation itself.

CxBR encapsulates knowledge about appropriate actions and/or
procedures for specific situations, as well as compatible new sit-
uations, into hierarchically-organized contexts. All the behav-
ioral knowledge is stored in the Context Base (i.e., the collection
of all contexts). The top layer of contexts in the hierarchy con-
tains the Mission Context. At the next layer are Major Contexts
and below them, a number of Subcontext layers can exist. Mis-
sion Contexts define the mission to be undertaken by the agent.
While it does not control the agent per se, the Mission Con-
text defines the scope of the mission, its goals, the plan, and the
constraints imposed (time constraints, weather, etc.). The Major
Context is the primary control element for the agent. It contains
action knowledge (the knowledge that controls the agent’s ac-
tion within the context) and transitional knowledge (the knowl-
edge that determines the activation and de-activation of the con-
text), plus a list of compatible Major Contexts that can follow the
current one. Identification of a new situation can now be simpli-
fied because only a limited number of all situations are possible
under the currently active context. Subcontexts are abstractions
of functions performed by Major Contexts which may be too
complex for one function, or that may be employed by other
Major Contexts. This encourages re-usability. Subcontexts will
de-activate themselves upon completion of their actions.

Transitions between contexts are typically triggered by events
in the environment—some planned others unplanned. However,
events internal to the agent (i.e., breakdown) can also trigger
transitions. Expert performers are able to recognize and identify
the transition points quickly and effectively.

Our work assumes only one mission and one major context
active at any one time. For the purposes of simulated training
exercises, this is an acceptable limitation. We leave the exten-
sion to simultaneous missions/contexts for future research.

CxBR is a very intuitive, efficient and effective representa-
tion technique for human behavior. It has proven successful in
several applications to tactical behavior modeling. While it has
no built-in means of learning such as case-based reasoning or
neural networks, it does lend itself to facilitating learning and
knowledge acquisition [17]. Our work described here takes ad-
vantage of this fact. A full description of CxBR can be found in
Gonzalez and Ahlers [14].

D. Genetic Programming

GP [22] is derived from genetic algorithms. Like genetic algo-
rithms, GP is a stochastic search algorithm inspired by Darwin’s

theories of evolution. The GP search process looks for the best
suitable program that will solve a problem. The target system
for the GP could be a CPU, a compiler, a simulation, or any-
thing else that could execute the predefined instructions. We will
refer to the target system as simply a program. In this investi-
gation the GP evolves source code statements. This makes it
very compatible for use within CxBR. GP can build complete
software programs that support the internal construction of the
context-base.

To make GP work, some basic requirements must be satisfied.
First, we need to have a population of individuals—programs
that represent different solutions to the problem. Note that the
representation of the source code needs to ensure that even if the
code is randomly generated, or randomly modified, the source
code should be syntactically correct end executable. The steps
of the GP algorithm are described in Fig. 1 (enhanced from
Eklund [10]). The Initialization of the individuals takes place
prior to learning. In the learning phase, all the individuals need
to be evaluated in some manner as to what degree they are
able to solve the problem. This is done by a fitness function
comparing each individual against the observed human perfor-
mance (Evaluation). The individuals with better fitness would
preferably be preserved and survive, and/or breed new individ-
uals to the next generation (Selection). The next GP step is to
evolve the individuals (Reproduction) in some manner to pre-
serve the “good” features and develop even better individuals.
Reproduction is conducted by applying genetic operators, such
as crossover and mutation, to the selected individuals. When a
new population has been evolved the old one can be discarded
and the learning process continues on with the new population
(Update population).

Individuals with a better fitness value are more likely to be
selected to participate in breeding the next generation of indi-
viduals than those with a worse fitness value. This natural se-
lection process continues over many generations, encouraging
better performing individuals and pruning worse performing
ones. When the evolutionary process is finished in GP, there then
exists a program that will solve the problem using the best-fit in-
dividual. More information on GP can be found in [22].

Because GP builds source code, it could be used to incorpo-
rate knowledge in any context level or in any instances within
CxBR where human behavior is encoded. This means that we
could choose to implement learning in any specific part of CxBR
and construct the knowledge therein.

E. Proposed Learning Strategy That Implements Learning
From Observation

Before continuing, it is important to remember that there are
two types of knowledge in CxBR: 1) Correct action-knowledge
to handle a specific situation and 2) transitional knowledge to
determine which context to apply to the current situation (i.e.,
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situational awareness). Learning the action knowledge for a
specific task becomes a nonlinear regression analysis where the
discrepancies between the model and the observed human are
being minimized and a nonlinear curve fitting takes place. The
situational awareness, on the other hand, is more of a classifica-
tion problem where the learning algorithm must classify the cur-
rent situation in order to activate the correct context. In order to
build the context base, the learning algorithm must meet two re-
quirements: 1) it must be able to cope with regression problems
and 2) with classification problems. GP has successfully been
applied to those two problem domains [4], [9]. Hence, we assert
that the GP learning approach can indeed support the process of
building a context base.

Our work makes a small compromise to our definition of
learning from observation by requiring that the context organi-
zation be defined a priori. The context organization here refers
to a definition of the contexts and subcontexts that will be used
by the agent in executing its required task. The context organi-
zation represents a design of the system components (the con-
texts and subcontexts) that will be used by the agent to per-
form the specific task envisioned. The context organization is
highly mission-specific, and it is designed by the knowledge
engineer charged with developing the agent, possibly with as-
sistance from a subject matter expert. Note however, that the
contexts and subcontexts in this predefined organization are all
empty—they initially contain no code. This a priori definition
of structure eliminates the need for the learning strategy to sug-
gest new contexts. While the latter would be very useful, we
leave it for future research. It also gives the learning algorithm a
structure within which to work that prunes the search space for
the learning algorithm.

Wolpert and Macready [37], [38] conclude in the No Free
Lunch theorem that all machine learning paradigms need to be
tuned for the problem at hand to enhance their performance.
In some way, the learning algorithm needs to incorporate
problem-specific knowledge into the behavior of the algorithm.
By using the context hierarchy of CxBR, it makes the CxBR and
GP approach a synergistic approach to learn human behavior
from observation. Similar work [21] has presented results that
indicate that splitting the knowledge into a hierarchy actually
improves the performance of the GP learning algorithm. GP
evolves the knowledge in an interpretable and well-known
manner (i.e., source code statements) applicable in all parts of a
context base (i.e., correct action for the current situation and sit-
uational awareness knowledge). On the other hand, predefining
the CxBR context organization enhances the probability of a
successful GP evolution because it facilitates the learning task.

In the next section, we describe how these two techniques
were combined into a practical artifact to build models of human
performance.

III. AN ARTIFACT THAT LEARNS BY OBSERVATION

THROUGH CxBR GP

With the above concepts in mind, we developed an algorithm
that builds an agent that emulates human individual perfor-
mance by observing a human perform an action or task on a
simulator. We call this algorithm Genetic Context Learning

(GenCL). To evaluate the effectiveness of GenCL, we devel-
oped and tested an artifact that incorporates this approach.
This section describes both the development and the testing of
GenCL. We identified two main difficulties with the implemen-
tation of conventional GP learning (i.e., any learning algorithm)
in CxBR:

1) hierarchical complexity;
2) interdependency among contexts.

The first problem points to the need to implement the learning
at the different levels of contexts (e.g., major contexts and sub-
contexts). Simultaneously evolving human behavior at all CxBR
hierarchical levels is very complex. The number of combina-
tions to try in the evolution process (the search space) would
indeed be very large. Different approaches have been devised
by others to address this problem. One approach is to reduce
this search space by letting the GP evolve more complex be-
havior by using a meta-language, where the function set is a
set of detailed behavior routines [24]. In the traditional CxBR
approach, this complex behavior (also referred to as high-level
behavior) is represented at the major context level, while the de-
tailed behavior (also referred to as low-level behavior) would be
modeled at the subcontext level. This technique would require
manual construction of the behavior in the lower context levels
that is not evolved by GP. This restricts the problem solving in
many ways but also contradicts the idea of learning from ob-
servation in that there would be significant manual develop-
ment required. Hsu and Gustafson [21] propose an alternative
GP learning approach where the high-level behavior (complex
behavior) would be broken down into lower level behaviors (de-
tailed behavior) that are learned first. The completed lower-level
behaviors (lower-level contexts) are then used as available func-
tions in the GP’s function set when the higher-level behavior
is being learned later. The approach is called layered learning
GP (LLGP) and it decomposes the complex problem into a hi-
erarchy of subproblems. Hsu and Gustafson showed promising
results in boosting the learning performance by using the LLGP
strategy. This is a type of bottom-up strategy that suits the needs
of our problem domain well because the problem domain rep-
resentation in CxBR already has a hierarchical organization.

Different contexts constituting tactical human behavior are
unavoidably correlated with one another. Such is the case, for
example, when driving in city traffic and approaching an inter-
section with a red traffic light where cars are already waiting
at the light. If one subcontext controls a car’s actions at the
traffic light while another controls its behavior in the presence
of other cars in the same lane, those two subcontexts are in-
terdependent in that situation—the learning of these two in-
stances could not be performed mutually exclusively. Note that
the performances of the two contexts are interdependent, i.e.,
successful performance depends on an interaction and collabo-
ration between the activation and de-activation of the two con-
texts. However, only one of the contexts can be active at any
particular moment. For a new context to be activated, the ac-
tive context at the same level needs to release its control of the
agent (de-activate it). The interdependent performance of con-
texts at the same level needs to be evaluated in some way during
the learning process. This means that the embedded mechanism



132 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 36, NO. 1, FEBRUARY 2006

Fig. 2. GenCL.

that controls the activation of contexts cannot evolve separately.
Instead, they need to evolve together, simultaneously. An ap-
proach to this problem is to use Potter and DeJong’s Cooper-
ative Co-Evolutionary strategy [30]. In this strategy, it is pos-
sible to have different populations evolving solutions to inter-
dependent problems in parallel. When it comes to evaluation
of the performance (i.e., calculation of the individual’s fitness)
of their joint effort, the best individuals from the other popula-
tions are included to produce a fitness value for the individuals
in the population in focus. In other words, the fitness function
for individual in population 1 is not only a function of this
individual, but also includes the best individual from popula-
tion 2: . According to this, we allow the em-
bedded mechanism that controls the action to evolve in parallel
and evaluate their joint performance when the fitness value is
calculated. We use LLGP and co-evolution as basic GP strate-
gies for learning human tactical behavior from observation in
CxBR.

A. Learning in GenCL

The learning process begins by observing and collecting data
from a human performer carrying out the mission/task of in-
terest in a simulator. The observed and logged data are then man-
ually parsed according to what data sequences apply to which
predefined context. This recorded human performance data will
serve as the fitness measure base that determines the appropri-
ateness of the individuals being evolved. Fig. 2 shows a diagram
of the components and their interactions in GenCL.

The source code individual in the GP module represents parts
of the context base. It is fed into a CxBR simulator that executes
it to produce the performance results of that individual. The be-
havior resulting from the CxBR simulator is then compared with
the observed human performance (the fitness function) and a fit-
ness measure is computed. Remember that, depending on the
current learning task, an individual can describe either the ac-
tion within a specific context or the set of rules that determine
context activation (i.e., situational awareness). Accordingly, the
population either contains individuals competing to represent
the action within the context, or individuals competing to repre-
sent the context activation process. If the evolving context is not
at the lowest context level, the individual might contain action
knowledge from contexts at the lower level as part of its func-

Fig. 3. GenCL learning algorithm.

tion set. The sequence in which contexts are evolved follows the
principles of LLGP described earlier.

The GP process automatically builds the action knowledge
within the contexts and the knowledge to apply the right context
in a specific situation, thereby providing the CxBR context base
with appropriate knowledge. The evolutionary process strives
to minimize the discrepancies between the performances of the
agents being evolved by the GP and the observed human perfor-
mance. Fig. 3 describe the GenCL algorithm in detail.

An example of human traffic behavior is when a driver is ap-
proaching slower traffic on a rural two-lane road with intermit-
tent head-on traffic present in the opposite lane. How different
people behave in such a situation can vary significantly. Some
drivers may decide to pass the slower traffic as soon as possible
and thereby take risks, while others may be more careful and
await a safer gap in oncoming traffic.

Let us presume that we have collected sample data when a
driver is approaching slower traffic. The learning procedure be-
gins by creating a GP population of randomly created source
code individuals as described in Fig. 3. The first individual is
placed in the CxBR simulator and the agent (with the indi-
vidual’s behavioral representation) is initialized with the same
speed, position and heading as the sample where the driver is
furthest away from the slower traffic. The CxBR simulator is
then executed with the source code of the individual (i.e., its be-
havioral representation) for a number of simulation cycles (i.e.,
the number of cycles it took the driver to arrive to the next data
sample selected). The simulation is now temporarily halted and
the agent’s speed and position are now compared to those ob-
served of the real driver. Upon recording the discrepancies, if
any, the simulation then proceeds unaltered until the next sample
point and the deviation to the real driver is once again calculated
and recorded. When all data samples have been covered, the de-
viation is averaged over all sample points and this will now con-
stitute the fitness value for this individual. The same procedure
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is then applied to all the individuals in the population and fit-
ness values are computed and attached to all individuals. The
GP reproduction process can begin and individuals are selected
to produce the next generation of individuals based on their fit-
ness values. This is done by applying genetic operators (e.g.,
crossover and mutation) with some probability to the selected
individuals. If no genetic operator is applied to the selected in-
dividual, it will be cloned into the next generation. When a new
population is created in the GP process, the simulation and eval-
uation of each individual will start all over again. This continues
until the stopping criterion of the GP is reached (e.g., acceptable
fitness is reached or number of generations executed).

In brief, the GP initially evolves the (pre-identified) lower level
contexts of the agent by creating individuals that seek to match
the data logged by the observed human expert. Once the lower
level contexts are evolved, GenCL then uses them as a function to
evolve higher-level contexts. The lower level context (i.e., a func-
tion that contains its action knowledge) can be part of the function
set when the higher level context evolves its action knowledge
or when the transitional knowledge for the lower level contexts
evolves. In both cases, the lower level contexts will be part of
the higher level context’s complete behavior. In order to evolve
the complete behavior of a context, all subcontexts that it could
possibly use must be complete and functional. This is the essence
of the Layered Learning algorithm described above.

When the actions involved in all contexts at a specific level
as well as the parent context are evolved, the artifact turns its
attention to the transitional knowledge that provides the agent’s
situational awareness. The transitional knowledge represents
the criteria used to transition agent control from one context to
the next. In order to simultaneously evolve all the transitional
knowledge in the different contexts (Cooperative Co-evolu-
tionary GP), it is necessary that the action knowledge for all
the possible contexts be already developed and deployed. The
fitness function for an individual in one of the populations is
now a function of the individual itself and the best individuals
so far from the other populations. A simulation now takes
place where all of the different contexts involved (including
the parent context) should be active sometime. The transition
knowledge, in the form of rules (i.e., the best ones from the
other populations and the one belonging to the individual under
investigation), are now executed and at every simulation cycle
one of them will activate its context and execute its action
knowledge. During this simulation, the discrepancies with the
real driver are recorded. These discrepancies will serve as the
basis for the fitness value after completion of the simulation.
When the transitional knowledge is evolved, it completes the
evolution of the agent. The agent’s behavior is now defined as
the set of action knowledge and transitional knowledge evolved
for the complete predefined context organization.

IV. TESTING OF PROTOTYPE AND EVALUATION OF CONCEPT

A prototype system was built and applied to automobile
driving. A commercial, full-scale driving simulator was used
to observe five different human test drivers drive a simulated
car in an urban and rural terrain database. The drivers were
university students with at least five years of driving experience

and between 25 and 37 years of age. The simulator lacked
motion capability, but was otherwise an exact replica of an
automobile cab, with three screens in front of the driver and a
rear view screen. Each driver was allowed to take one informal
test drive to familiarize himself with the simulator, and was
thereafter formally subjected to observation during a subse-
quent 30-minute drive. This collection of data is now referred
to as the training data set. Approximately four months later, the
same five drivers were subjected to a similar but not identical
and slightly shorter (20 min) route for use as validation data
(validation data set). The training drive included city driving
(speed limit 50 km/h) with 11 traffic lights and nine intersection
turns and rural driving (speed limit of 70 km/h or 90 km/h).
During the drive, the drivers experienced seven hazardous
situations of varying severity. However, the tests described here
only used city driving to validate the performance of the GenCL
approach. The city driving portion of the data showed the most
interesting behavioral patterns among the drivers, such as
diversity and variability. Therefore, rural driving and hazardous
situations were not used and will not be further discussed here.

All of the traffic lights in the training data set triggered a
change of state when the driver passed a point 30 m in front
of the light. Four of the 11 lights changed from red to green;
six from green to yellow to red, and one remained green. Al-
though the virtual city environment was the same in both data
collection scenarios, the drivers took an alternative route in the
validation run. Furthermore, the light state triggering distance
was varied between 30, 35, and 40 m ahead of the light for the
validation run. Hence, the drivers experienced different traffic
light scenarios than they did in the training run.

The environment for the learning process was arranged to en-
sure that the behavioral patterns of the drivers were neither pre-
dictable nor trivial. One feature of human behavior is variability.
An example of how to trigger unpredictable behavior from the
drivers is found in a traffic light changing from green to yellow
and then to red. If this change takes place when the car is at a
certain distance from the light, the drivers will have to make a
decision on whether to slow down to a stop when the light turns
yellow, or continue and pass the light while yellow. A short in-
vestigation among the simulator operators showed that this dis-
tance to trigger diverse behavior among people seemed to be
when the car is at a point 30 m in front of the light when driving
at city traffic speeds. This triggering distance succeeded in cap-
turing this variable behavior among the drivers who participated
in these experiments. The same driver sometimes stopped at a
light about to turn red while other times he continued on. Dis-
crepancies among the different drivers could also be noticed, as
some were more careful and decided to stop more often than
other drivers.

It might be tempting to present the same situation to the actor
several timesandbase the learninguponsomeaveragemeasureof
the performance. The risk in these repetitive situations is that the
human bases his or her action on prior knowledge of the situation
and might not behave naturally. Conversely, letting the human act
inarealisticenvironmentwithsimilar,butnot identical, situations
introduces disorder (as well as realism) to the trainingdata. In two
verysimilar situations, theactormightactdifferently. In theworst
case, contradictory data might be introduced into the data set. If
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learning from observation is to be rigorously implemented, this
is an important issue to address. The learning conducted in this
research left any disorderly and contradictory data within the data
set to investigate how well GenCL handles them. The probability
of successful learning will, of course, be reduced by this disorder.
However, human behavior is not always consistent, nor based on
some average performance.

The training data consist of:

— the observed driver’s speed;
— distance to an intersection or a traffic light;
— two Boolean variables indicating, respectively, the pres-

ence of intersections (within 100 m) and traffic lights;
— a variable indicating the state of the traffic light when the

car is within 100 m of the light.

During the collection of training samples, the simulator sampled
the drivers’ behavior at a rate of 10 Hz. This resulted in a data
set larger than 5000 samples per driver, when in city traffic.
To make the learning feasible, the data were reduced from
these samples to less than 350 samples per driver over all the
contexts evolved. This reduced the extent of the computations
for determining the fitness value of each individual and made the
process tractable. These samples were sufficiently complete to
represent all possible situations within city driving with different
statechangesof trafficlight, intersectionsandnormalcitydriving.
The training data were partitioned to contain a similar amount of
data from the different contexts. This was done to ensure that the
learning conducted would not favor any particular situation. The
350 total training samples were collected from all involved
contexts. Training data for each context were chosen from
typical situations for the specific context under investigation.
The objective was to collect somewhere between 50 and 100
samples with a constant time period for each context. If the data
set is too small, it will not be sufficient for learning and if too
large, the computational complexity of the process increases.
As different drivers behave differently among themselves and
also from time to time and the availability of data, the number of
samples came to vary between 25 and 80 samples per context to
cover each driver’s behavior pattern within a specific context.
As an example, if Traffic-Light-Driving is to be learned, data
from several different traffic light situations (e.g., stopping at
light turning red, running yellow lights, passing traffic lights
when making an intersection turn, etc.) were included in the
training data to cover the complete behavior in that context.
All the data used for learning can be found in Fernlund [11].

Note that the agent is unaware of any traffic rules and regu-
lations. Its only means of learning is to mimic the driver’s be-
havior. As an example, the agent is never told to stop at a red
light but learns this if the observed driver stops at the lights
turning red. As mentioned earlier, however, the drivers do not
always stop when a light turns yellow, about to turn red.

Prior to learning, the empty context hierarchy is identified.
The hierarchy used in this investigation is described in Fig. 4.
This will give the GP learning algorithm a frame within which
to operate. Details of the prototype are found in Fernlund [11].

When the context hierarchy is defined, the evolution of the
agents can take place as per the GenCL algorithm. The reduced

Fig. 4. Context hierarchy defined a priori for this application.

training data set is now used to compare the individual’s perfor-
mance during training with the actual driver’s performance. The
deviation in performance between the driver and the individuals
is the base for the fitness function that propels the learning al-
gorithm, as described in Fig. 3. Five agents were evolved from
the observed data, one corresponding to each driver. They are
labeled Agent A through Agent E, respectively, corresponding
to Driver A though Driver E. Once evolved, the agents were sub-
jected to the following evaluations.

1) Learning capabilities test: How well did the agent learn
the behavior with which it was trained? The training data
were used as the comparison benchmarks here. This was
deemed to be the easiest of the tests.

2) Generalization Test: How well did the agent perform in
situations different from those seen during training? The
validation runs were used as the comparison benchmark
in this set of tests.

3) Long-term stability test: How well did the agent perform
after a substantial period of time in continuous operation?
The agents’ stability and reliability over a long period of
time were tested here to ensure the absence of small error
accumulation.

4) Utility test: This test compared the performance of two of
the agents evolved through GenCL against two tradition-
ally (i.e., manually) developed agents. The comparison
was related to the agents’ comparative fidelity, not to de-
velopment time or effort. The behaviors of the GenCL-de-
veloped agent as well as that of the manually developed
agent were compared to the validation data set in this test.

The Learning capabilities test is a simple test of comparing out-
puts from the agent with outputs from the human drivers when
they are presented with the same inputs. This will provide a mea-
sure on how well the agents were able to handle the learning
tasks. However, in order to investigate the agents’ performance
as autonomous entities it was necessary to test the agents’ ability
to perform in normal environment (i.e., running in a simula-
tion). Merely testing the correctness of a model (represented by
the agents) by validation of correct output for certain inputs to
an evolved function was not deemed sufficient. Such a testing
could show good performance (i.e., input/output mapping) but
it would not reveal much about the agents’ accumulated errors
and their long-term stability. We need to ensure that the agents’
performances in this simulated environment are comparable to
the drivers’, even after minutes and hours. This was done by
using a simulation that exercised the agent’s context base to let
it freely and autonomously act in the environment.
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Besides the potential accumulation of errors, another issue
typically arises when GP is used as a learning algorithm. GP
produces noncoding regions during the evolution of individuals.
Noncoding regions in GP are code segments that are never ac-
cessed during the learning phase, but as the agents are inserted
into a simulation, they could be occasionally triggered, causing
the agents to behave erratically. Two different types of non-
coding regions could exist in a program evolved by GP. The first
one is code that never could be executed or redundant code. The
other type of noncoding regions is when some branches of code
are never tested during training but could very well be executed
if the right conditions occur. To detect when the noncoding re-
gions influence an agents’ performance, the agents must be ex-
tensively tested as autonomous agents in an unpredictable envi-
ronment. Even when noncoding regions create undesirable be-
havior, it has been proven that they can actually enhance the
learning capabilities of GP [12], [26]. Evaluations of agents de-
veloped through GenCL are later indirectly evaluated for the
presence of harmful noncoding regions. We now look at the re-
sults of the four evaluations and discuss their significance.

A. Learning Capabilities Test

Table I shows how well the agents learned their tasks when
compared to the performance of their corresponding driver. This
test used the training data as the comparison standard, thereby
evaluating how well the agent learned their behaviors. To gen-
erate these results, inputs (i.e., presence of traffic lights or in-
tersections, distance to lights or intersections and the status of
the traffic lights) were presented to the agents and their cor-
responding outputs (i.e., speed) were compared to the actual
drivers’ cars’ speed (i.e., the agent is treated as a black-box).
Note that for the agents to produce an output, they need to eval-
uate the current situation (i.e., all the momentary inputs) and de-
termine which context to activate. The active context will then
produce the corresponding output. The output from the driver’s
car and the corresponding agent is the speed at a specific mo-
ment. Approximately 150 samples from the training data are
used for each agent. If the correlation coefficient is close to 1.0,
there is a high correlation between the two data sequences. If
the correlation coefficient is close to zero, there is little correla-
tion. A correlation coefficient close to would indicate that
there is a high inverse correlation. A high level of correlation
was expected for this test, and the results showed exactly that.

A slightly worse performance can be detected for agent E
when compared to the other agents. Investigation of driver E’s
behavior shows a slight inconsistency within the training set.
Traffic light #2 is located 30 m after an intersection turn. This
means that the speed of the driver at this point is rather low, and
the most obvious action is to stop at the light that is about to turn
red, as all the other drivers did. However, driver E ran light #2.
His attention might have been on other things and he might not
have spotted the light early enough. This might explain his deci-
sion to run the yellow light. This might complicate the learning
task of agent E since driver E stops at other lights turning red,
even when his approaching speed is higher. Note, furthermore,
that the training data set lacks much information about the en-
vironment, such as buildings and other objects by the road that
could have influenced the performance of the drivers.

TABLE I
LEARNING CAPABILITIES

B. Generalization Test

This test involved a comparison of the agent’s performance
against the driver’s in their validation test run. This test involved
data not used in training and represented new situations not seen
by the agents in training. The purpose was to evaluate the ability
of the agents to generalize their performance.

During generalization testing, the agents operated as au-
tonomous agents in a simulated environment, facing the same
situations that their corresponding drivers experienced during
the validation test run. The distance where the traffic lights
changed their state was now varied and not kept constant at 30
m as in the training scenarios.

Table II depicts the qualitative decisions made by the agents
vs. their corresponding drivers at those lights that turned from
green to yellow to red. Note that some discrepancies now are ev-
ident. This was anticipated because the tests bring out the vari-
able behavior of automobile drivers when the lights turn to red
from yellow.

If we look at agent E and driver E, we can see that the be-
havior differs significantly vis-a-vis the traffic lights. In actu-
ality, Driver E performed very differently in the validation run
compared to the training run. He was very reckless and ran more
yellow lights than did the other drivers in the training run. Con-
versely, he was very careful and stopped at almost every light in
the validation run. Agent E’s poor performance can be attributed
to this inconsistent performance of driver E between the training
and the validation runs. Such inconsistency is common human
behavior, although it certainly makes it more difficult to learn
one’s “normal” behavior. The common way of learning algo-
rithms to approach problem with inconsistent data is to average
the output over these occasions. However, in tactical applica-
tions, an average behavior makes little sense unless one intro-
duces an element of randomness into the behavior. It would be
better for the agent to make the most probable decision than to
make an average decision. If the training data sets are too small
and limited, inconsistent data probably occurs more frequently.
If more training data are available, then the most probable reac-
tion from a specific person at any situation would be easier to
determine. One cannot escape the fact that inconsistent behavior
is always difficult to model and predict.

When we look at the quantitative comparisons in Table III,
the two measurements of comparison, besides speed correlation,
were speed and time deviation between the agents and their cor-
responding drivers. The agent is now operating autonomously in
the environment and the deviation is continuously measured as
the agent experiences different traffic lights and/or intersections
and regular city driving. As the agent operates in the environ-
ment, the agent’s speed is compared to the speed of the driver
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TABLE II
QUALITATIVE COMPARISON OF THE DRIVERS/AGENTS PERFORMANCE

TABLE III
SPEED AND TIME DEVIATION DURING THE VALIDATION TESTING

at each position. This is a measurement of the agent’s momen-
tary performance at the different locations in the environment.
As the agent is autonomous, it will take the agent some time to
reach a certain position in the environment. The same is true for
the driver. Hence, by measuring the deviation in time to reach
each specific position in the environment we get a measurement
of the agent’s performance vis-à-vis the driver’s. The time de-
viation will then serve as a measure of the long-term deviation
between the driver and the agent.

Looking at the speed and time deviations of the validation
run in Table III, agents A, B, and C perform very well. Agent
E, on the other hand, does not perform well at all. This can be
explained by the afore-mentioned inconsistency of driver E be-
tween the training run and the validation run. The time devia-
tions are affected rather dramatically after a traffic light when
the stopping behavior at that traffic light differs between the
driver and the agent. This is because the time for the light to
turn green will be added to the time deviation.

It should be reiterated here that the objective is to train the
agent to act as the observed driver, and not to evolve the best
skills for car driving. If the observed driver is drunk, the agent
should evolve drunken driving behavior. In other words, the only
thing that measures how good the agent learned its task is how
similar its behavior is to the observed driver.

The results for agent A are quite good even when its mis-
behavior at one of the traffic lights is kept in the comparison.
However, a somewhat worse performance can be observed from
agent D. The misbehavior of agent D is more interesting to an-
alyze because during the validation tests agent D actually runs
some yellow lights where the driver D actually stops. The sus-
pected cause of this was the constant light state-triggering dis-
tance of 30 m in the training data for Agent D. Since GP is
evolving source code, it is possible to investigate the evolved
code to determine the cause of the agent’s action.

Fig. 5 shows part of the code evolved in Agent D that con-
trols the activation of the Traffic-Light-Driving context. Here
we can see that if the agent is about to make a turn at an inter-
section where the traffic light is, it will immediately activate the

Fig. 5. Part of agent D’s evolved code for Traffic-Light-Driving activation.

Fig. 6. Behavior of agent D at traffic lights changing from green to red.

Traffic-Light-Driving context. If not, Agent D does not con-
sider anything before the agent is closer than 76.5 m to the light.
With this knowledge, we conducted a test where the agent was
presented to two different traffic lights. In one, the agent was to
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TABLE IV
AGENTS’ LONG TERM BEHAVIOR

turn at the intersection where the light is located. In the other,
it was to continue straight. The agent was set to approach each
light six times and the distance that triggers the light to change
from green to yellow was varied between 100, 50, 40, 30, 20,
and 10 m.

In Fig. 6, we can see that if Agent D is about to make a turn in
the intersection, it activates the Traffic-Light-Driving context
early to lower the speed of the agent. Furthermore, when it is
closer than 76.5 m, it will activate the Intersection-Turning
context to further slow down the car. If the traffic light changes
its state when the agent is far enough from the light, the agent
will stop at the light. Note that each diagram in Fig. 6 consists
of six different lines but at several occasions they are overlaid
since the behavior of the agent was the same. Note that the agent
needs to release the activation of one subcontext for another
subcontext to get activated. In this transition, the major context
will temporarily get activated (i.e., Urban-Driving in this case).

When the agent is going straight, on the other hand, the
Traffic-Light-Driving context will not be activated until the
agent is closer than 76.5 m to the light. In this case, the speed
of the agent will be too high for the agent to be able to stop at
the light with the help of the Traffic-Light-Driving context.
Consequently, the agent runs the yellow light. The interesting
result of this investigation is that the poorly behaving Agent D
does not trigger on the obvious 30-m mark. Rather, the action is
triggered by whether Agent D is going to make a turn or not at
the intersection with the light. Upon inspection of the training
data for Agent D, it reveals that Driver D actually stops at all
lights (that turn yellow) where he is going to turn, while he
runs through all those in which he doesn’t turn. Hence, there is
a correlation between stopping at the yellow light and whether
the driver is making a turn or not. The GP found this relation
and learned it. The problem could have been addressed by
including richer training scenarios, where the driver had a more
varied experience to be observed.

This analysis shows that the use of GP as the learning algo-
rithm that produces knowledge in an interpretable and analyz-
able manner could be used to discover nontrivial behavior pat-
terns of the observed human.

The generalization test shows that agents A, B, and C gen-
eralize the problem very well and are able to handle new situa-
tions. Worse performance can be detected for agent D because
of a lack of richness in the training data (i.e., the training data
lacked occurrences where the driver stopped at a traffic light
without making a turn). Agent E does not perform well because
Driver E was highly inconsistent with himself. The problem
with agent D and agent E actually derive from the issue of
designing appropriate training scenarios and the collection of
training and validation data.

C. Long Term Stability Test

The long-term stability test was conducted to investigate
whether the agents exhibit stable behavior even after an arbi-
trarily long simulation run. When the knowledge and behavior
within the agent is developed by a machine learning algorithm
it is important to investigate if the cumulative errors are in-
creasing over time resulting in unstable behavior.

The five agents were allowed to operate within the simulated
environment for 40 min of real time, pass more then 60 traffic
lights and 25 intersections. The agents were exposed to a variety
of traffic light scenarios where none were the same as the others.
To be able to compare their long term stability, their behavior
was recorded when the traffic light ahead of them was either
yellow or red, since this is one of the occurrences where variable
behavior was detected previously.

If an agent was not stable enough to invoke Intersection-
Turning when making a turn, the agent will approach the turn
too fast and will leave the road. If this happened, the agent would
be stuck, since no recovery algorithm was implemented for the
agent to find a way back to the road. Hence, the fact that all
the agents were still running after 40 min proves stability of the
agents in terms of activating the Intersection-Turning Major
Context.

Since the traffic lights now change their states at different
distances (i.e., the lights are time triggered and not related to
the agents distance) and agents might approach the lights at dif-
ferent speeds, it is difficult to make an exhaustive statistical anal-
ysis of their behavior. Table IV shows a simple compilation of
the agents’ behavior when they approach lights that are either
yellow or red. Two different events occur: the light turns from
green to red or from red to green.

As the agents come to a stop at the red lights, a comparison
could be made on their different stopping distances. Table IV
shows that all the agents (except agent A) stop at almost the
same distance every time. Therefore, their standard deviation
on the stopping distance is small. Agent A stops at a different
distance almost every time. Actually, the surprising fact is that
the other four agents manage to generalize so well that they
stop at approximately the same distance to the lights, even when
the times of the light changes are different. In all the training
data presented to the agents during learning, lights changed their
state when the driver was at a point 30 m in front of the light.
Hence, all the agents stopped consistently at the same distance
during training (approximately 30 m after the light turns from
green to yellow). So, the most obvious thing would have been for
the agents to not generalize as well as they did, but rather to stop
30 m after the light changes from green to yellow. The objective
here, however, is not to compare their distance to the traffic light
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TABLE V
COMPARING EVOLVED AND ENGINEERED AGENTS IN THE VALIDATION ENVIRONMENT

after stopping. Rather, the objective is to measure the agents’
consistency in their behavior. All agents behave consistently and
stop close to the light except agent A, who slows down and stops
when the light turns red. Even if the behavior is different than
the other agents, it is still consistent.

The final observations on the agents’ long-term performances
are their behavior when approaching red traffic lights turning
green. Two observations can be made here. The first thing that
reflects correct behavior on the part of the agents is that they do
not stop at the red light when they are far from the light. The
other is that they lower the speed as they get closer and that
they pick up speed when the light turns green. The column that
describes the correct behavior at a light turning green in Table IV
compares the number of correct behaviors to the total numbers
of lights turning green experienced by each agent. All agents
show correct behavior all the time as they approach a red light
about to turn green.

This test indicates that the agents show consistent and stable
performance throughout the long-term stability test. Four of the
five agents perform more consistently in traffic light driving than
could be expected with regards to the training data presented
during the learning phase (i.e., the constant 30-m stopping dis-
tance). This also infers that the noncoding regions in GP are not
affecting the agents’ performance in a significant manner.

D. Utility Test

In order to determine how useful the automatic creation of
simulated agents through GenCL is, two agents were manually
developed by an independent human developer in the traditional
manner. We want to compare the new approach of building sim-
ulated agents with human behavior to the traditional way of
agent building. In the traditional agent building task, the knowl-
edge engineer interviews the human and if possible allows him
to act in his normal environment and observe his behavior. Both
methods aim to create general applicable agents. Hence, the de-
veloper interviewed and rode with two of the original drivers - C
and D. The driving part of the knowledge acquisition lasted for
approximately 45 min in city driving (the 30 min in the driving
simulator covered both city and rural driving). This is slightly
more time than the drivers spent in the driving simulator for the
training set of data. One might note that collecting appropriate
data in the real world is considerably more complicated that in
a simulator. The simulator environment can be configured to
focus on specific and interesting events. In the real world, how-
ever, one can only try to act so those events might occur but it
might be difficult to achieve. However, the objective is to ensure
that the new way of building agents does not deteriorate agent
behavior compared to traditional agent modeling.

The developer knew that his agents would be compared
to those developed by the GenCL system and was told to
focus on the behavior patterns so far implemented by the
GenCL (i.e., Traffic-Light-Driving, Intersection-Turning, and
Urban-Driving). Hence, the initial knowledge available to the
human developer was the same as available to GenCL (i.e., the
same empty context organization). The task for the developer
was to collect knowledge through interviews and by observing
the drivers drive a real car. Of course, the virtual city used in
the simulator runs does not exist. Therefore, a route through
the city of Linköping, Sweden was chosen that was reasonably
similar to the virtual one. The developer was then to model
the drivers’ specific behavior as they drove in city traffic with
specific focus on intersections and traffic lights. After the
knowledge was collected and analyzed, two agents were de-
veloped and inserted in the same CxBR traffic simulator as the
agents developed by GenCL. Note that the development was
done by an independent researcher without any influence from
those developing GenCL. Now the two different approaches to
building human behavior models, implemented in simulated
agents, could be compared. Table V compares the agents devel-
oped by the human developer and that of the GenCL agents to
the driver’s behavior in the Driving Simulator.

Comparing GenCL Agent C and the engineered Agent C with
Driver C, the GenCL agent performs consistently better than the
engineered Agent C in the validation environment. Comparing
the D agents to Driver D, the GenCL agent performs slightly
worse than the engineered Agent D in the validation environ-
ment. The interesting result here is that the GenCL agent is able
to perform nearly as well as an agent developed by traditional
means even when the GenCL Agent D was seriously affected
by the lack of richness in the training data, as previously de-
scribed in Section IV-B. Hence, the GenCL algorithm is able to
construct agents with performance at least comparable to that of
agents developed in the traditional way under the worst of cir-
cumstances, and better under normal circumstances.

The development time (including preparations, knowledge
acquisition, knowledge processing and implementation) when
the agents were developed with the knowledge engineering ap-
proach was three weeks of full time workload, or 120 person
hours of effort. To evolve one agent (including knowledge in all
contexts) on a Pentium 4, 1.8-GHz machine with 512-MB in-
ternal memory takes less than 36 h. Adding another five hours
for the preparation of the driving simulator and five more for
preprocessing the data for the GenCL algorithm brings the time
estimate for creating an agent with GenCL to 46 person hours of
effort. This is roughly one-third of the manual effort. Because
GenCL evolves source code statements, the knowledge evolved
is ready for use as soon as the learning phase is complete. Note
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that this is a rough approximation, since the experiments were
conducted at the same time as the new methodology was being
developed.

V. SUMMARY AND CONCLUSIONS

We have proposed, described and tested a new approach
to learning human performance in a tactical situation. The
results indicate that this technique can be successfully used to
create agents that model the human performance of tactical
tasks and the accompanying decision-making. Our approach
employs Context-based Reasoning and Genetic Programming
(CxBR GP). These agents are built automatically with data
logged while a human expert performs a (tactical) mission on a
simulator. We refer to this process as learning from observation.
A prototype incorporating this algorithm, called GenCL, is
able to learn and generalize the actions of the humans being
observed in a simulator. Furthermore, the performance of the
GenCL algorithm is comparable to agents developed by the
traditional knowledge engineering approach. The evaluation
of the agents was done at several levels. First, the agent’s
output for a specific set of inputs was compared to that of their
corresponding human drivers to evaluate their ability to exhibit
the same driving tendencies as their respective driver. Secondly,
we compared the output of the agent performing the task in a
simulation to that of its corresponding driver in a previously
executed validation run. The agents were never exposed to this
validation run during learning. These validation runs by the
humans were performed four months after the original training
run and they included significant differences from the training
runs. This was done to gauge the agents’ ability to generalize by
subjecting them to situations not seen during training. Thirdly,
the agents were subjected to a long term performance test. Here
the agents were placed into a simulation run for an arbitrarily
long time to determine whether they show stable and consistent
performance. Lastly, models of two drivers were derived in
the traditional knowledge engineering fashion and agents were
built “by hand” from these models. These hand-created agents
were then compared in performance to the actual drivers as well
as to the original evolved agents. This comparison showed that
the performance of the evolved models compared favorably to
that of the engineered models.

As a matter of hindsight, we had not used the simulation in the
learning phase for the very first training sessions. Consequently,
the GP had only learned to map correct outputs to given inputs.
This input-output mapping introduced severe instability in the
initial evolved agents, since no mechanism was present to prune
the harmful noncoding regions. We instituted the use of the sim-
ulation after experiencing the poor initial results without it. By
using a CxBR simulation in the learning phase, accumulated
errors and discrete deviations in the behavior affected the fit-
ness value and pruned noncoding regions that can worsen agent
performance. Hence, the initial input-output mapping algorithm
was discarded and replaced by the one we now call GenCL.

The results obtained suggest that this approach is viable for
building agents with human-like behavior for use in training
simulations or for analysis. This approach could potentially
save significant time and effort. Furthermore, the agents evolved

here possess individual human behavior patterns. Prior research
in this area has focused on creating optimal behavior from
human performance. Our results show that we now can rapidly
model for individual humans with highly personal and often
far from optimal behavior. Improvements could be achieved by
evolving the agents in a massively parallel architecture. The
results presented here encourage further research concerning
this new learning methodology.
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